skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cong, Guojing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many of today’s most interesting questions involve understanding and interpreting complex relationships within graph-based structures. For instance, in materials science, predicting material properties often relies on analyzing the intricate network of atomic interactions. Graph neural networks (GNNs) have emerged as a popular approach for these tasks; however, they suffer from limitations such as inefficient hardware utilization and over-smoothing. Recent advancements in neuromorphic computing offer promising solutions to these challenges. In this work, we evaluate two such neuromorphic strategies known as reservoir computing and hyperdimensional computing. We compare the performance of both approaches for bandgap classification and regression using a subset of the Materials Project dataset. Our results indicate recent advances in hyperdimensional computing can be applied effectively to better represent molecular graphs 
    more » « less